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Abstract

FUN.STAT is a name proposed by us to describe a synthesis of statistical

reasoning which combines quantiles and quantile-densities, information and

*entropy, and functional statistical inference. This paper describes a

FUN.STAT approach to the problem of statistical data analysis of two random

samples, respectively representing two populations of interest. It is composed

of four parts. Part I describes how conventional approaches to two sample

" problems, including representations of linear rank statistics, are equivalent

*"to functionals of a stochastic process.D(u). Part 2 motivates the auto-

regressive density estimation approach to the problem of functional statistical

inference of'D(u) and states' several conjectures concerning the properties

, of the density estimation approach. Part 3 outlines heuristic derivations

of the asymptotic distribution theory of D(u). Part 4 provides a summary

and an example, using TWOSAM which is a computer program for autoregressive

two sample statistical data analysis; it has been implemented as a Fortran

program and as a SAS procedure.

Keywords: Two sample non-parametric tests, linear rank statistics, location-
scale models, data analysis, convergence in distribution, density estimation,
autoregressive density estimation, functional statistical inference, FUN.STAT,
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Part 1. Two Sample Problems as Data Analysis of Stochastic Process D(u), O<u-1

1.1. Univariate: one sample problem

The univariate: one sample problem of statistical data analysis considers

a random sample X ... ,X n of a continuous random variable X and seeks to infer

its probability law.

In the quantile approach to the study of the probability law of a random

variable X, the functions to be estimated are [Parzen (1979)]:

distribution function F(x) = Pr[X < x], -.<x<.;

quantile function Q(u) = F-ITu) = inf{x: F(x) > u} , O<u<l;

probability density function f(x) = F;(x), -0<x<00

quantile-density q(u) = Q'(u), O<u<l ;

density-quantile fQ(u) = f(F-(u)) = {q(u)} -  , O<u<l;

score-function J(u) = -(fQ)'(u) = -f'F1 (u)/fF-l (u), O<u<l

When F is continuous, FF (u) = u. When F-1 is continuous, F- F(x) = x.

We call X (or F) bi-continuous if both F and F-1 are continuous functions.

When F is bi-continuous, then F-1 is a true inverse in the sense that

F(x) = u if and only if F-10) X.

To estimate a function [for example, D(u), O<u<l] three types of

estimators should be distinguished: fully parametric [denoted D^(u)];

fully non-parametric [denoted D(u)]; and functional parametric [denoted

D(u)]. These types of estimators have the following characteristics:

(1) fully non-parametric makes almost no assumptions about a model for the

function; (2) fully parametric estimates the parameters of an assumed

finite-parametric model for the function; and (3) functional parametric

estimates the parameters of an approximating parametric model whose order

is determined (selected) by the data.

. . .
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Fully non-parametric estimators of F(x) and F-(u) [given a random

sample XI,...,Xn with order statistics X(1)<...<X(n)] are defined by the

sample distribution function F(x) and the same quantile function F-l(u).

We systematically use to denote a sample function which is a raw (or fully

non-parametric) estimator of a function defined on the ensemble or population.

Definition. Sample distribution F and sample quantile F For a

sample X1 ... ,Xn, F and F- are piecewise constant functions satisfying for

• j=O,l,. ..,n

_ X xX•~ Fxx(j) <x < xUj+l )

F "(u) = X j-l <
(j) n -n

. where X -, X(n+l)

A basic question of the univariate: one sample theory is the goodness

of fit problem: to test the null hypothesis Ho: F(x) = F o(x), where Fo(X)

is a specified continuous distribution function. The mathematical

statistician is concerned with finding the exact and asymptotic distributions

under both null and alternative hypotheses of statistics such as

D SUP I F(x) - Fx)lL'IP n -m<x<= 0 o

= {F(x)- F (x)}2 dF(x)
n 0 0
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By a formal change of variable x = Qo(u) = (u) one can write

D sup I i ui-uin O<u<l I0(u

12 f1 {F-1(u U)2d
n 0  0u

One rigorously obtains these formulas by interpreting FFo0(u) as the sample

' distribution function Fu(u) of the random variables U1 = F(X),... U = F(X
U. 1 0 1 n 0 ")

The null hypotheses H is equivalent to the hypothesis that U = F (X) is
0 0

uniform on [0,1].

Alternative to testing the sample distribution function for uniformity,

one could test for uniformity the sample quantile function Fu (u) = Qu(u) -

F 0 F(u).

A Brownian Bridge process B(u), O<u<l is a zero mean Gaussian process

with covariance kernel

E[B(u )B(u2 )] min (ul ,u2 ) - ulU2

The asymptotic distribution of test statistics such as Dn and W2 isn n
based on the convergence theorems.[as sample size n tends to ]: assuming Ho,

00B BF (u) i n {F 0ol(u) - u} D) B F(U )

BF-(u) = V4 {Fo F (u) - u} D BF(U)

. where ) denotes convergence in distribution of stochastic processes and BF(u)

is a limiting process distributed as a Brownian Bridge process.

6I
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A quick and dirty definition of convergence in distribution of stochastic

processes is as follows:

{BF(u), O<u<l} -' {BF(u), O<u<l1

if and only if for every bounded continuous functional g(x(u), O<u<l) on a

* suitable metric space of functions x(u), O<u<l,

E[g(BF(u), O<u<l)] - E[g(BF(u), O<u<')].

Testing for uniformity a random sample UI,...,Un of points on the unit

interval is a canonical problem of statistics in the sense that many other

statistical problems can be transformed to this problem. One way to

determine the appropriate transformation is by attempting to find the

analogues of the test statistics Dn and W2. To develop such analogues, onen

might compare computational formulas.

Computational formulas for Dn and W 2 [which are well known in the theory
ni n

of goodness of fit tests, see Durbin (1973)] can be stated in terms of a general

distribution function D(u), O<u<l defined in terms of a set of specified

constants U., where 0= U0 < U1 < ... < Un < Un+l =1; define0 1 n -U 1

Du) =0 0 0<U U < 

- n ' j < +l

-1 , Un< u < Un+1 = 1

Then

max max u U -l)D n O<u<l l(u)-ul = J.n n- U j n

2 fl {D(u) - u}2 du n +2 n 11 2
n 0j=l
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1.2. Univariate: two sample problem

The univariate: two sample problem of statistical data anlaysis

considers random samples X1,. . . ,Xm and Y."*'Yn respectively representing

measurements on random variables X and Y with continuous distribution

functions F(x) and G(x). We interpret X and Y as measurements of a physical

variable in two different populations. The null hypothesis H :F(x)=G(x) of

equality of distributions is to be tested, if possible without specifying

the distributional shapes. This paper assumes that F and G are bi-continuous

(that is, F, G, F G are continuous functions).

The random sample X,,...,Xm has sample distribution F and quantile F-.

The random sample YI,...,Yn has sample distribution G and quantile G1-

We denote by H the sample distribution of the pooled sample X1,...,xm ,

Y19 . Yn" It can be represented

H(x) = XF(x) + (1-x) G(x)

defining N = m+n and A = m/N. The limit of H(x) is H(x) xF(x) + (1-x) G(x).

We assume that as N tends to o, Xtends to a limit satisfying O<X<l.

Techniques in the two-sample problem which are close counterparts of

one sample techniques are the statistics

= sup

D mn -c<x<w IF(x) G(x)l

W2n _ f {F(x) G(x) 2 dH(x)

Durbin (1973) states computational formulas in terms of the ranks

R., j=l,.. .,m, in the pooled sample of the j-th largest observation in the

-X-s-ample. In our notation these formulas become

0" .. . . . _ . . .. . . . . , . ..
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'-R. R ,-1
1:' I max (j

Dmn l- j=l,...,m m N ' N m)

m 2  + 1 2m+n
mn ( I- j- + 12m n

By comparing these formulas with the general computational formulas in the
2

one sample case one sees that the test statistics Dmn and Wmn are related

to the statistics

1 max '1 D'')_u}2
l-- o<u<l ID(u)-ul f {D(u)-u du

defining D(u), O<u<l, as follows:

6(u) 0 0_ u < -

R. R.

J ' N Nm

R m
=1 - < t <1.

One aim of this paper is: (1) to relate the process D(u) to the processes

and H-l (2) to relate 6(u) to representations of linear rank statistics,

(3) to relate D(u) to quantiles, and (4) to use D(u) graphically for a

complete data analysis of the null hypothesis Ho.
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1.3 Representations of D(u)

We have defined R. to be the rank in the pooled sample of X the

j-th order statistic in the X sample. A more precise definition of rank is
defined in terms of the sample distribution H:

Rj = NH(X j=l,...,m

Another insight into the definition of rank is provided by the formula, of

later use,

R.-l R., .) X, _)_ < U < _,

N

note H I(u) equals the k-th order statistic in the pooled sample for

k-l < k

The null hypothesis Ho: F(x) = G(x) is often tested by means of linear
0

rank statistics of the form

.1 
m R.

TN=- J(N)N. m jl

where J(u) is a suitable weight function called a score function. Some

frequently suggested score functions are listed in Table 1A.

0°,
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Table 1A

Score functions for two-sample linear rank statistics

Test for Location Difference Test for Scale Difference

-1 1 2i{ .I)-I (u) l - (u) 2

Normal scores test

u - 0.5 (u - 0.5)2

Wilcoxon-Mann-Whitney Test Mood test

Sign (u-0.5) Sign {Iu - 0.5 I - 0.25)

Median test Quantile test

lu - 0.5 1 - 0.25

Ansari-Bradley test

To study asymptotically the distribution of TN various representations

have beer introduced. The celebrated Chernoff-Savage (1958) representation

of a linear rank statistic TN is

T N c f N N+7 H(x)) dF(x)

*The Pyke-Shorack (1968) representation is

TN = FH (u) dvN(u) = Flii

0(.i =1F ( N

for a suitable signed measure vN" Chernoff-Savage establish directly a limit

O theorem for TNs while Pyke-Shorack derive the convergence properties of TN

from the convergence properties of the process FH-I(u), O<u<l [see Pyke (1970)].

The functional statistical inference approach proposed in this paper is

* based on the proposition that FH- the Pyke-Shorack two-sample process,
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may be appropriate for theorem proving but is not directly useable for

exploratory data analysis. The role of the score function J(u) is preserved,

and functions whose graphs are suitable for data analysis are obtained, by

using

D -l(u), estimator of D ( u ) = HF-1(u)

of0 t1-
D (t) = (t), estimator of D (t) D (t) - FH- (t).

Note that D 1 (t) is a right continuous function which is the inverse of the

left continuous function D (u); it is defined by

D- (t) =sup {U: 01 U) < ti

Theorem lB shows that D(u) is computationally exactly the same as the

- process D(u) in terms of which we approximately expressed Dmn and W2
mn mn"

" Theorem IA is further evidence that one can introduce a process D(u) such

that many conventional two sample statistics are functionals of this process.

The univariate: two sample problem is thus transformed to a problem of

statistical inference from a continuous parameter process D(u), O<u<l.

4 We call this a problem of functional statistical inference.

The branch of statistical theory which we call "functional (statistical)

inference" (FUN.STAT) is a branch of "abstract inference" [Grenander (1981)].



Theorem IA: Functional Representations of Linear Rank Statistic

• lm Rj

T J(T

TN m

1 N

=f
1 J( WT) Di~u)) du

I N

Po f: efn J(N u) -D Nt

Proof: Define J(u) =J( N u). In the Chernoff-Savage representation

TN = f o JN(H(x)) dF(x) make the change of variable u = F(x) to obtain

TN = Il JN(Dl(u))du. The change of variable t = Dl(u) completes the proof.

Theorem iB: Explicit Formulas for D (u) and D(t).

D(u) O<u<l, is piecewise-constant, non-decreasing, left continuous, and
1

satisfies

N m < j=l .. ,m.

D (t) = (t) is piecewise-constant, non-decreasing, right continuous, and

* satisfies D (0) 0

R.
,'. - ,.1 1

aJ

D
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More precisely,

D (t) 0 0 t <_

(t) - R. j=N,- N.,m" "
R. R.

R
0 ~ < tD(t) =1, N- t<1

The Pyke-Shorack process FHI(u) is given by

FH(u) = j < u 
... m 'N - N

F-l(u) =0 o -Nu_

Rm-l

F -(u) = 1 N < u < 1.

Example. Suppose n=2, n=4, X1=2, X2=4, Y1=1, Y2=3, Y3=5, Y4=6. Then

R =2, R2=4.
2

Diu) -- o< u < ,

4 1

(t- 6 ' g< u < 2;

"-"6
i(ID (t) =0 , 0 _ 2

1 2 4

t,
4
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4 t

6-

i (u) 0, 0 < u <

1 3
' < u<-

• :The statistic

1 m R.=. R - I j
-m N+l

is the Wilcoxon statistic (up to a constant multiple); it corresponds to

J(t) = t. The value of TN is 3/7; it can be evaluated by the defining

sum or by the representations

": TN : o u) du : " + 6

16N 62141Y 3

TN fl t dD (t) ff + 4 1

..e
0 The Pyke-Shorack representation would be evaluated

1 (V (1) - V N(1) + 1 {VN() - VN(2)}

O'

if one bothered to discover the values of the measure vN corres ponding to J(u).



.4

14

Part 2. Functional Statistical Inference Approach to Two Sample Problem

2.1 Introduction

Part 1 has attempted to show that most conventional test statistics in

the "univariate: two sample problem" are functionals of a stochastic process

D(u), O<u<l, and proposes that the problem of statistical inference should

be posed as follows: what can we learn from a sample path of the stochastic

process D(u), O<u<l, assuming that it is the sum of a signal D(u) FH- (u)

and a noise represented CD(u)/N:

D(u) D 0(u) + I CD(u)

The covariance kernel of CD(u) in general is a function of the

following unknown functions (which it is our goal to estimate)

DF(u) = FH- (u), DG(U) = GH-I(u),

* dF(u) = D (u), dG(u) D6(u).

..*. Note that DF(U) D(u) and ADF(U) + (l-A)DG(U)= u.

Part 3 outlines a heuristic proof of the following conjecture.

* Conjecture 2A. Covariance Kernel of CD(u). E[CD(u) CD(v)] equals, for u<v,

(1-)2 1-I dG(u) dG(v) DF(u)(lDF(V))

+ (1-A)1 dF(u) dF(v) DG(U) (1-DG(v))]

-'4
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Distribution of CD(u) under Ho and local alternatives Hl. Under

SHo: F = G, DF(U) = DG(u) u, dF(u) = dG(u) = 1, CD(u) has covariance

kernel (for u<v)

(i. ) [A-1 u(l-v) + (l-x) u(l-v)] = ( -0) u (l-v)

which is the covariance kernel of (] ) B(u). When 11 is true, or under

alternative hypotheses H1 under which H is only "gently" not true (as

opposed to "violently" not true), then [D denotes equal in distribution]

" . (-C B(u)
CD(u) 0(X Bu

When the parameter in a statistical model is a function the statistical

inference techniques used are called functional statistical inference. By

introducing D(u), O<u<l, the two sample problem has been formulated as a

problem of functional statistical inference (abbreviated FUN.STAT) in

which the parameters to be estimated or tested are the function D(u) = FH (u),

its density d(u) = D'(u), and its Fourier transform

p(V) I e21tUVDu ) 1 e27Tiuvp(v) e2i dD(u) =o e d(u) du , v=O. +1,+2,....

The hypothesis H 0 is equivalent to

H 0 D(u) u; d(u) = 1; p(v) = 0 for v $ 0
b0
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To understand what we can learn from d(u), let us relate it to the

underlying densities f(x) and g(x); the derivative of D(u) = FH-l(u) equals

d(u) = fH 1u

hH- (u)

Consequently, the reciprocal d-l (u) satisfies

d(u) hH(u) xfH- (u) + (l-x) gH'(u)

fH (u) fH- (u)

A + (l-) gH-(u)
fH- (u)

Therefore: d(u) <X; d(u) tends to 0 if f(x) tends to 0; d(u) tends to x- l

-1*i if g(x) tends to 0. By estimating d (u), one can estimate the likelihood

ratio g(x)/f(x) without estimating g(x) and f(x) separately.

An estimator d(u) of d(u) generates an estimator of D(u) by

D(u) =f d(t) dt.

To form an estimator d(u) from D(u) it is often convenient to introduce

first a raw estimator of p(v) denoted p(v).

* The sdmple pseudo-correlations are defined by, for v = 0,+l,.

p(v)= fo e2liuv dD(u)

W I exp 2wiv(Rj/N)
m j=l
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They obey the model (for alternative hypotheses close to H )

p(v) p(v) + ,--)- n(v) , v-O,_l,...

defining

n(v) 1 e2riuv dB(u) v=O,+l,...;

one can show that n(v) is a sequence of independent N(O,l) random variables.

A Brownian Bridge B(u) can be represented [see Cs6rg6 and Revesz (1981)]

B(u) O n(v) ju e-2-ivtdt
30O 0

Under Ho ,  Jp(V)1 2 is asymptoti.cally distributed as a sequence of

2Nx
independent random variables such that ip(V)12 is chi squared distributed

with 2 degrees of freedom. A 95% significance level for this statistic is 6.

To test Ho one could'examine if any values of Ip(V)1 2 , v=l,2,...,

exceeds a threshold such as 3(l-x)/Nx.

Natural "portmanteau" test statistics for H are of the form
0

I kN(v) Ip(V)1 2 for a suitable weight function kN(y). The optimal choice of
v>l

weights kN(v) depend on the alternative hypothesis against which one is

testing I.. If one makes an arbitrary choice of weights [such as

kN(v) = 1/v for v>l], then there will always exist alternative hypotheses

against which the test statistics has efficiency close to 0. If one always

uses for a goodness of fit test the statistic

6 -
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20
I jp(V) 12

v-o1

one will too often accept H when it is false but only a few values of p(v)

are significantly non-zero; if one always uses the statistic

4

I Ip(v)12
-.- v=1

one will too often accept H when it is false because p(v) = 0 for
0

v=l,...,4 but is non-zero for v>4. To achieve an "optimal portmanteau"

test statistic, one might consider

M
I IP(v)j2
v=1

where the order M is determined by the data. Insight into how to choose M

is provided by density estimation.

e
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2.2 Density Estimation, Kernels, and Windows

Some insight into the problem of optimally choosing weights kN(v) can

be obtained by examining the density estimation problem in which one seeks to

optimally choose a test or estimator based on the data. Estimation of the

density d(u), O<u<l, can be based on its Fourier series representation:

Sd(u)= I e- 2 - i u v p(V)

A raw estimator p(v) generates a symbolic raw estimator

d(u) iuvp(v)

The series defining d(u) is symbolic because it does not converge. A natural

class of estimators d(u) of d(u) are of the form, called kernel estimators,

d(u)-= A kN(v) e up(v) = KN(u-t) dD(t)

defining

KN(t) I e- kN(v), kN(V) .5t dt.

V=-00

We call k (v) a kernel, and KN(t) a window. The theoretical investigation
n

of these estimators in the context of the two sample problem is still very

open for research [see conjecture 2B below].

Example. The choice of weights

°-o.*



20

in 2nvh - 1 h e2witv dt
N~~v) fvh-h

may be shown to be equivalent to the estimator of d(u) given by [for h'u<l-h]

dh(u) _ D(u+h) - D(u-h)

which we call a 92p or leap estimator, or a numerical derivative.

Example. The density estimator d(u) can be motivated as a Bayes

estimator of d(u) given the data p(.). Let

d(u) EEd(u)Ip(-)], p(v) = E[p(v)lp(-)].

Then

a(u) = Z e2iuv p(v)V=_V

The prior distribution of p(.) is that p(v), v=O,+l,... is a sequence of

*x'. independent zero mean normal random variables with variance Elp(v)12 = e C(v),

where e is a scalar parameter and C(v) is a known convergent sequence.

Under local alternatives Hl, and conditional on the value of p(.), we consider

p(v), v=l,2,... to be independent with mean p(v) and variance C =(l-x)/Nx.

Then p(v) = k(v)p(v), where

m
#  Var [p(v)] ' 0C(v)

k(v)= Var v)] C N + eC(v)

CN -1

= {I +eC(v)

,I
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An important family of weights of this form is

k(v) = (1 + (V)2r}-l

where one has to choose the exponent r and the truncation (or half-power)

point M adaptively from the data. This choice of weights can also be

motivated by formulating the density estimation problem as an optimization

problem: choose d(u) to minimize

fo Jd(u) - d(u)12 + p Io d(r)(u)2

where p is a penalty parameter to be specified by the researcher.

In the general context of functional statistical inference, when a

kernel estimator is motivated by an optimization problem of the foregoing

kind, we call it a non-parametric penalty estimator. A density estimator is

called parametric select when it is a function of a finite number of

parameters and the number is chosen by the sample. Autoregressive density

estimators [described in section 2.4] are parametric select estimators.

Conjecture 2B. The asymptotic distribution of kernel density

4P: estimators can be developed from the theory [outlined in Part 3] of

functionals f 1 J(u) dD(u) and the representation d(u) = fl KN(u-t) dD(t).

Let k(x) - -<x<-, be a kernel generating function, and take kN(V) to be

7'- of the form

kN(v) : k(-)

We call M a bandwidth lag or truncation point or half-power point [depending

. on the standardization of k(.)]; it is a function of N, and tends to as N

tends to -. Then the asymptotic variance of d(u) is conjectured to satisfy
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L Var [d(u)] =K 2 1-X dF(u) dG(u)

where

K f- K2(t) dt = f k2(x) dx,

defining K(t) = f e-27rixt k(x) dx, k(x) f' e27vixt K(t) dt.
-00 -00

Example. The kernel generating function

k(x) - sin 2rx2ITx , xfO0

corresponds to the window generating function

K(t) : 0.5 for I[ti < 1

= 0 otherwise

One may verify that K2 = 0.5; the weights

kN(v) -- k( ) -- sin 2irv/Mn2rv/M

correspond to a leap estimator with M=i/h. The foregoing conjecture for the

variance of a kernel estimator agrees with the formula in Part 3 for the

differential variance of D(u).

6

6
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2.3 Parametric "Non-parametric" Tests based on Location Scale Parameter Models

A fully non-parametric estimator of D(u) = FH -(u) is provided by D(u).

A functionally parametric estimator 6(u) is provided by density estimators

d(u) based on the kernel method [section 2.2] or the autoregressive method

[section 2.4]. A fully parametric estimator of D(u) is based on estimating

parameters in a finite parametric model.

A frequently adopted parametric model for the distribution functions

F and G is the location-scale parameter model

F(x) = Fo(x- pl )  , G(x) = F ( )

where F0 (x) is a specified distribution function, and a, '2, a 2 are

unknown parameters. Equivalent parametric nmodels for the quantile functions

are

F-l(u) =I +1 Qo(u) , G-l (u) = P2 + o2 Qo(u)

A model for D1 (t) = HF (t) is easily obtained:

Dl(t) = xt + (l-x) GF- (t)

- xt + (l-x) F (1 + a Q 0(t) -

0 (02

P-2 + ('-I )Qot
A xt + (I-x) Fo(QO(t) + 21) Q(t))

02 02
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A ~ + (1-X) F0(Q0,(t) - -iQ.(t))

defining parameters

Il -"2 a1

02 02

Alternative hypotheses H1 which are local to H correspond to assuming e

and ' to be near zero; then one can employ a linear Taylor series expansion

of F o(x) about x = Q (t) to obtain

Dl(t)) t - (l-x) { foQo(t.) + ' Qo(t) foQo(t)}

Our goal is an approximate parametric formula for Dfv,

Conjecture 2C. An approximation for D(u), valid for o and p near 0, is

D(u) = u + (l-X) e foQ0 (u) + (1-X) Qn(u)foQo(u)

A careful derivation of this approximation, and its consequences, is given

by Prihoda (1981). By substituting a parametric formula for D(u) in the

model for D(u) under local alternatives to H0 ,

D(u) D D(u) + B(u),

one can obtain estimators o and 0 which provide parametric estimators of D(u).

°.

- --- " -
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The model for D(u) can be stated as a regression model in e and ip:

(-D-) {(u) - u} f Q (u) + P Q (u) f Q (u) + {NA(l-A)}-B(u)

IX0 0 0 0 0-A Bu

- .This representation is similar to a representation used by Parzen (1979) in

the univariate: one sample case to form estimators of location and scale

parameters in the model F(x) = Fo(-):

foQo(u) Q(u) = foQ(u) + oQ(u) fQo(u) +- B(u)
0 0 0 0 0 0 0

Linear Rank statistics fl, J(u) dD(u) arise naturally in expressions

*-.- for estimators o and i. The variance and covariance of optimal estimators

e and p,in the regular case, are given by inner products of fQo (u) and

Qo(u) foQo(u) in the Reproducing Kernel Hilbert Space (RKHS) corresponding to the

process {NB(l-A)} 8(u). One can use the data D(u)-u over the full

interval O<u<l, or on a subinterval O<p<u<q<l, or at a discrete grid of

0,~if values u, ... , uk in (0,1).

Asymptotically efficient estimators e and i which are linear functionals

in D(u) are obtained by applying the theory of regression analysis of

continuous parameter time series developed by Parzen (1961). Introduce the

reproducing kernel Hilbert Space inner product between functions f(t) and
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g(t) on a subinterval pft,'q of the unit interval corresponding to the

covariance kernel K(u1,u 2) min (u1,u 2  u U1 u 2 of a Brownian Bridge process:

=fg f' f(t) g'(t) dt + f(p)g(p) +~~gq

Digression. We find interesting an alternate expression:

=fg I~ -f(t) -g'(t) dt

where

*f'(t) =f'(t) p<t<q

-1f(p), 0< t.!p
p

f ~ (q), qt1

To form the inner product of f(t) and g(t) over O<t<l we require

4 f(O) = f(l) = g(O) = g(l) = 0; then

= 4g f'(t)g'(t) dt.

Note that (f OQO)'(u) =-j (u), {Q (u) f Q (u)1' =1 -Jo(u)Qo (u). To

form the estimators o and vwe form: the information matrix
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I 1I 112 <foQo, foQo> <foQoQo.foQo>

.21 122 <fQ 0, Qo.f Q > <Qo.f Qo, Qo.f Q>

0 0 0 00 0 0

and the statistics

T = <foQo, {D(u)-uJ>
1 00

T "..f Q 9 {D (u )-u }>.- T2 <Qo 0oo

Then

T r1

T

In the symmetric case foQo(u)= fo Qo ( l-u), and Qo(u) -Qo(l-u). Then

I 12 = 0 when q = 1-p.

Let us explicitly evaluate the inner products when we use the interval

O<u<l and all the data D(u), O<u<l. We must assume that
4oJo(u) du = 1 {l-Jo(U)Qo(u)} du = 0. Then

f l 1= 4J(U)12du, 122 11-Jo(u)Q(U)1 2 du,

1
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Ti fo J0(u) dD(u)

T2 :o {I -Jo(U) Qo(u)} dD(u)

The covariance matrix of e and p is given in general by

Var (e) Cov (e,)

. - NX(l-A)

Coy (e,j) Var (p)

To illustrate the meaning of the foregoing formula for variance,

consider e = (P2-vl)/2 in the normal case. Assume that a, = 02 = a'

Let 1j be the sample means and a2 the variance of the pooled sample.

Then ( i- 2 )/o has asymptotic variance equal to m 1 + n = N/mn =

-{N(l-A) - I ,since J (u) = 0-(u) in the normal case.
11' 0

To test H0: F=G the analogue of conventional "non-parametric" test

statistics (which could be called a parametric "non-parametric" test

statistic for Ho ) is the quadratic form [where * denotes transpose]
0

[Var [e] C-v [0 l-

*: L;J Lov [e,6] Var ['p]

which, under the null hypothesis H0 , has a Chi-squared distribution with

two degrees of freedom.

4I"
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In terms of the test statistics T1 and T2 one can write

T [ ]
•~ N X ,i -

T. T2  T 2

Example: The logistic distribution has standard quantile functict'

and score function

Qo(u) = log I-u . J(u) 2u-

Therefore [see Eubank (1979)]

I~ (2u-1) 2 du 1 1 T

11 o3 22 9

A non-parametric test statistic for location [which is optimum for the

logistic distribution] is

L - Nx iT1 12  
- 2N I'. h1Y T MV7) f-0Y(u- )dD(u)2

* m
which is asymptotically equivalent to the Wilcoxon statistic. R It is

equivalent in a finite simple if we define D(u) to be piecewise constant

and equal to j/m at u = R./(n+l); then

*m

dD(u) l /(N+l)
j=
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A non-parametric test statistic for scale [which is optimum for the

logistic distribution] is

_ NX IT2 12
L2 l- 122

3 j( 2
(3+f2)(1-A) M (N+l- 2 log N+-Rj)

This test may have been given first by Prihoda (1981).

Motivation of entropy or information measures as "portmanteau" test statistics.

Parametric "non-parametric" tests of H given by L may be most powerful when

one is testing alternative hypotheses which correspond to shifts in location

and scale parameters. To obtain general "portmanteau" procedures, which do

not require close specifications of the alternative hypothesis, let us

re-express the statistic L in terms of the estimated density

d(u) 1 + (l-x) [e(foQ0 (u))' + W( (u)foQo(u))']

One may verify that

:o ~i(ui)- 1 2 du = LT-Ir L L{I-,/j,
One is led to conjecture that

--T 1 [d(u)-lI du

4
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is a test statistic for H whose null distribution is chi-squared witho0

degrees of freedom equal to the number of parameters in d(u). Next one is

led to conjecture that the entropy or information measure

2Nx 1 _

I-X fo -log d(u) du

is a test statistic for H whose null distribution is chi-squared with

degrees of freedom equal to the number of parameters in d(u). We next

introduce autoregressive estimators d(u) for which fo log d(u) du is

evaluated as a parameter without integrating an estimated density.

I
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2.4 Autoregressive estimation of d(u) and tests of H
0

The entropy H(f) of a probability density f(x), --<x<-, is defined to

be

H(f) = f{-log f(x)} f(x) dx

0 f {- log fF- (u)} du.

For a density d(u), O<u<l we define

H(d) = - log d(u) du > 0

to be the entropy in the density-quantile sense. Density estimators'd(u)

whose entropy are easily evaluated are provided by the autoregressive

method of density estimation.

Given p(v), v=O, +l,...,+m, ... one forms for m=1,2,...

dm(u)= Km II +am(1 )e27riu+ m(m)e 21iumI2

. where the complex-valued autoregressive coefficients a (m) are computed by
m

* the Yule-Walker equations described below. Further

.(d) 0 log dm(u) du l -og Km

is directly computed in terms of tile parameter Km .

ii
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* The Yule-Walker equations[which are solved to obtain a m(j), j=l,..., m^m

and Km from p(v), v=O, +1, + m] are [see Parzen (1979)]

m

I. a m(j) p(j-k) 0 k=l,...,m,
j=0

I m(j) P(j) : Km
j=0

where a (0) = 1. They are solved using the recursive algorithm
m

1 m-Il~

CL (m) - K- j= m- (0 ) p(j-m)

Km~ 1 j=0

and for j=l,...,m-I

.... * (m- j)-. & m( j ) = m- ( j ) + Otm( m) m*-l m)

where a* is the complex conjugate of a. The autoregressive method of

estimating densities was first implemented in a computer program, and its

theory investigated, by Carmichael (1976, 1978).

,0 A proposed diagnostic for determining the order m of an autoregressive

estimator dm(u) is the plot ofm

D D(u)=fu 1 dD(u)in(U = 0 d(m)

An intuitive criterion for choosing an optimal order m is the
* smallest value of m for which D m(u), O<u<l, is not significiantly different

from DO(U) = u, O<u<l.
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This paper aims to raise the consciousness of statisticians about the

FUN.STAT (functional statistical inference) approach to the two sample

; problem. At this time we can only state conjectures about the theorems

that need to be proved [theoretically and/or by Monte Carlo calculations].

One theorem is about the large-sample properties of autoregressive density

estimators; another theorem is about the use of estimates -log Km [of

entropy or information measures] to test H and to form order determining

criteria for optimal autoregressive orders m. A noteworthy irony is that

the orders m chosen in practice are small, and one might wonder about the

* relevance of a large sample consistency theorem.

Conjecture 2D. Formula for the asymptotic variance of d (u) as anm

estimator of d(u): As m tends to - at a suitable rate [such as m3/N -* 0

as N d ] d (u) tends in probability to d(u) and its asymptotic variance satisfies
i m

N a d(u)] d
m Var [d m 21x dF(u) dG(u)

(Note that m denotes the autoregressive order and not the size of the X

sample.) This conjecture is based on the formulas for the variance of the

kernel estimators conjectured in section 2.2, and the relations between the

distributions of kernel and autoregressive estimators of the spectral

,- density function of a stationary time series [conjectured by Parzen (1969),

A and confirmed by Berk (1974)].

Conjecture 2C. A "portmanteau" (alternative hypotheses unspecified)

procedure for testing H [which may have optimal properties] is of the

form: accept H0 if

It
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lo 2m 1-A m=l,2,..
m N-- log Km<_ N ~12

It should be emphasized that further theoretical and Monte Carlo

investigation is required to find the best multiple of the right hand

side to use in practice [perhaps including a factor of log log m].

Conjecture 2F. A procedure for autoregressive density estimator order

determination. If one rejects H because one of the inequalities in

Conjecture 2E is violated, let m be the value of m minimizing a criterion

of the form

AIC(m) = log Km + Lm 1i

m N x

An estimator of d(u) is taken to be dm(u). Note that AIC(m)<O.m

Conjecture 2G. Can one develop criteria for accepting H based on
0.- ~~2Nx - 2 teesaitc r

the values of (TZIp(v)I , v=l,2...... .Under H these statistics are
1-x 0

asymptotically independent Chi-squared distributed with 2 degrees of freedom.

0
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Part 3. Asymptotic Distributions of Stochastic Processes Arising in Two

Sample Quantile Data Analysis

3.1 Introduction

The FUN.STAT approach to testing equality of two independent populations

with bi-continuous distributions F and G respectively is based on:

(1) estimating parameters which are functions such as D1 (u) = HF- (u), and

D(u) = FH-l(u), and

K (2) exploratory data analysis of the fully non-parametric estimators

D1(u) F-l(u) and 6(u) = 6l1(u).

This part discusses how to derive the asymptotic distribution of the

stochastic processes Dl(u), O<u<l, and D(u), O<u<l. Our aim is to outline

an operational calculus for intuitively deriving results concerning the

distribution of empirical processes [such as D(u)], and for identifying

stochastic processes CD(u) and CD (u) such that

D
~ ID(u) - D(u)) _*D C(u), ID 1D(u) - D () D CD (u)

where D connotes convergence in distribution of stochastic processes.

Our results are heuristic theorems, rather than rigorously proved theorems

* with carefully stated regularity assumptions.

* Theorem 3A. Asymptotic distribution of a sample distribution function

F(x). F(x) of a random sample X1 ,... ,Xm can be expressed in terms of

Fu(u) of U1 = F(Xl),...,U m = F(Xm ) which are uniform on [0.1]. Note that

FF-I(u) = Fu(u). One can show that there is a Brownian Bridge process

B(u), O<u4 1, such that
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wD

Sm U (u) - u} D B(u)

We denote by BF(u) a Brownian Bridge process such that

BF(u) m FF - u) D BF(U)

Next define

CF(x)=m {F(x) - F(x)} D BF(F(x))

The limiting process of F(x) is denoted CF(x), where CF(x) - BF(F(x)).

--l
Theorem 3B. Asymptotic distribution of sample quantile function F (u).

=--1
FUl(u) FF (u) satisfies

BFI(u) = A {FF-I(u) - u} D - CF.(F- (u))= -BF(u)

* - F (u) under suitable conditions on fF (u) [see Cs6rqo and Revesz (1981)]

satisfies

I. (u) F- (u)} )F(u )

fF (u)

The limiting process of F1 (u) is denoted C F-(u). We note the basic

relation

C (u) = (-I) {Tu F-I(u)} CF(F- (uI))

F-(

Proof: Write FF I(u) - u = FF- (u) - FF- (u) + FF-I(u) - u. One may

verify that
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rm-i {FF 1 (u) -FF- (u)) = CF((u)) _* C FF (u)) B B(u)

The first conclusion may now be inferred. Next m F(u) -F (u)} equals

I Cu) -F_ ICu) M{m" (FF_ (u) - U))

FF- (u) -FF- ICu)

The left bracket contains the reciprocal of a difference quotient which

tends to f(x) evaluated at x = F 1 (u). The right bracket converges to -B F(u).

3.2 Conjectures in Distribution of D(u)

To apply Theorems 3A and 3B to the two-sample problem we first derive

* heuristically the asymptotic distribution of GF1 (u) as an estimator of

GF 1 (u):

GF '(u)}

AI{G (GF Cu)) -GF (u) + GF (u) -GF (u)}

+ GF1C(FF- (u)) -GF1C(u) C lu)
FF- I u) uF

'u) B-(u)

B1~) GF (G1 u)) - ~ -GF

4~~ du 1C) FCu
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The asymptotic distribution of

D Diu) HF1 (u) xFF (u) + (1-) GF-(u)

as an estimator of D(u) = HF- (u) = Xu + (l-x) GF-l (u) is described by the

asymptotic distribution of HF- (u) - HF- (u).

Conjecture 3C. VIf (HF-I(u) - HF- (u)) and

vff(l-x) (GF- (u) - GF-Iu)) converge in distribution to

CD(U) : (1-x) [1-x BG(GF-(u)) - (- g Fl. u )} B (U)]
fF (u)

Let (u)= Di(u) hF-(u)/fF-l(u). Then dl(D l(u)) = hH-l(u)/fH-lu).

The asymptotic distribution of D (u) = (HF1 )-(u) as an estimator of

D (u) = (HF-l-(u) = FH-1 (u) is conjectured (using proofs similar to those

used for sample quantile functions) to satisfy the following theorem.

Conjecture 3D. Asymptotic distribution of D (u).

SA( {D (u) -D u)}D CD (u)

whereD-Iu) (D (u)) is explicitly given by
f d) ( M (u))C1)

.CD(U) =l-0) [ ) -H(u) BG(GH- (u)) - A (u) BF(FH- (UM" )[ hH-I (u) hH (u)

"0 (u

- ----
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The covariance kernel of CD(u), given in Conjecture 2A, shows that

the complex-looking process CD(u) actually has much simplifying symmetry.

It has been previously derived in Pyke-Shorack (1968) who show

{-l~u) _ FH-l(u)} D CD(U )

An interesting question is whether the asymptotic distribution of D(u)

can be deduced from the Pyke-Shorack results using the fact [Theorem 1B] that

D(u) - FH (u) equal 0 except for about m sub-intervals of length 1/N

in which it equals 1/m.

Distribution of stochastic Stieltjes integrals and linear rank

statistics. The process D(u) has the important property that a linear rank

statistic can be asymptotically represented as a stochastic Stieltjes

integral

10 J(u) dD(u)

for a suitable continuous score function J(u). Its limiting distribution

can be described as follows:

A(J) = ,/( (/J(u) fu) J o(u) dD(u)}

'*I is asymptotically normal with zero mean and covariance kernel K (J1 ,J2 )

- *euri sti cal ly representing

KA(J 1 ,J2 ) =Cov [(JI ) A(J2 )]

6
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and given by

K A K(j1,j2) = 1f (U J 1( J2(u2) dE[CD(ul) CD(U2)]

Explicitly

K A(Jt , 2) K I (J1 i , 2) K 3(1 1 ,12) K 2(JIS , 2)

where

K 1 1 ) - 1 u u) dG u) dF(u) du ;

1 2 fol Jl~u) J2( G(Du1 o2

K 191 )4 J (u) {d~)G(u)D }' du 4 Ju {d )Gu)1 du

23(j, 2) 0 1l~ F o~ d(u) dG( F1 u1 u)u

-11

[ d (u1)d (u2 )D F (rin(ul,u2)) + 01-0- d (u I)dF'.(u 2 )D G(min(ul'u2)1

+ e(u I- u2)O x1 d (u1 )d G(u2)d F(u2) + (1-0- ld (u 1 )dF(u2 )d G(u2)1

+ e(u2-u ){X- 1 d (u2 )dG(ul)dF(ul) + (1-X)Y1 d (U )dF )dG~l1

where e(t) =1 or 0 as t>0 or t<O. Under the null hypothesis H

-40
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K~J,2) X o 1{' J() 2( u) du f f0 Jl(u) du f 0  J2(u u

One can obtain the asymptotic covariance of p(v1 ) and p(v2) by choosing

J l(u) = e2viuv1 , J2(u) = e-
2niUV2

3.3 Density Estimation and Differential Variance

Insight into the asymptotic variances of density estimators is provided

by a formula for the variance of the fully non-parametric estimator of

d(u) = D'(u) given by the numerical derivative

D (u+h) - D (u-h)
d (u)= 2h

Conjecture 3E. A formula for the asymptotic variance of the numerical

derivative d(u) is

2hN Var [d (u)] " 1-_ dF(U) dG(U)

_ The expression on the right hand side is called the differential variance

of D(u); it can be used to suggest conjectures concerning the asymptotic

distributions of kernel and autoregressive density estimators [Conjectures 2B

*Q and 2D]. The form of the differential variance suggests that d(u) has the

distributional properties of a density-quantile estimator since an estimator

of a probability density d(u) has variance proportional to d(u), while the

variance of a density-quantile d(u) has variance proportional to d2 (u).

..
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Conjecture 3F. A fully non-parametric estimator of dl(u) : D(u) =

x + (l-X) {gF- (u) fF-l(u)} given by

D = DI(u+h) - (Dl(u-h)
dl (u) 2h

has asymptotic variance satisfying

2hN Var[dl(U)] l -L { F -(u)j {d HF -() - x dl(U {
I d l-x 

Outline of a heuristic proof of Conjecture 3E. 2hN Var [d(u)]

approximately equals

, -_ EIC,(u+h) C (u 2h ) 2
2h

l- 2 [() 2(u) EIB (GH- (u+h)) B (GHuI(u-h)) 2S= 2h dFGG

po~ii~i+ A- dG2(u) EIBF(FH-I(H+h))_ B F(FH-I(u+h))l2

[A d (u) d( + x

G 

FF( 

u)

since XdF(u) + (l-x) dG(U) = I.

19,
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Covariance of linear functionals reqiired to derive asymptotic variance

of density estimators. A general theory of asymptotic distribution of

density estimators can be developed by assuming that K(J 1 9J 2 ) can be

represented

K (JlJ = o Ju(U) J2(u) V,(u) du

+ o 4o Jl(u) J2 (u) V2 (ul,u 2) duldu 2

where Vl(u) and V2 (ulu 2 ) are integrable functions. We call V,(u) the

differential variance; V2 (u ,u2 ) vanishes in formulas for the asymptotic

variance of kernel and autoregressive density estimators. Spectral averages

*of the spectral density of a stationary time series which is a linear

process have the foregoing structure [see Parzen (1961), p. 982].

*0•

0.

S .

eI
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Part 4. Summary of Two Sample Quantile Data Analysis Using TWOSAM

To test the null hypothesis H0 : F(x) = G(x) of equality of two populations,

2
statisticians usually choose a test statistic (TN, Dmn' Wmn, etc.), compute

its value from the data, and test the significance of the computed value of

the test statistic chosen. This paper shows that conventional test

statistics can be represented as functionals of the process D(u), O<u<l, and

proposes an autoregressive density estimation approach to the data analysis

of D(u).

In addition to providing the applied statistician with the ability

to analyze sample paths of continuous parameter stochastic processes

[such as D(u), O<u<l], this paper aims to stimulate the applied statistician

to appreciate the basic probability theory of these stochastic processes.

A graphical (rather than an arithmetical)way to test H is to plot

D(u), 0 < u < 1, and examine whether its deviation from the uniform

distribution D(u) = u appears to be significantly different from the sample

0

path of a Brownian Bridge with variance (l-x)/XN.

. The proposed quantile data analysis approach to the univariate: two

sample problem involves several stages.

Stage 1. Fully non-parametric analysis. Obtain for each of the two samples,

and for the pooled sample, descriptive statistics and plots of the

informative quantile function. Plot on one graph the quantile functions of

the two samples. Plot D(u).

-2

Stage 2. Autoregressive analysis. Obtain: Ip(v)I , square modulus of

sample pseudo-correlations, for v=l,...,M where M is a specified maximum
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order. Plot d m(u) and bm(u) for m=l,...,M. List values of K m log K'

and AIC(m) for m=l,...,M. Obtain optimal order by AIC criterion.

The two sample non-parametric data modeling procedures described in

this paper have been implemented in a computer program called TWOSAM. I

would like to acknowledge the contributions to this program of the

r "following colleagues during the course of their Ph.D. studies: Jean-Pierre

Carmichael, Mike White, Tom Prihoda, Scott Anderson, Phil Spector, and Avi

Harpaz (who deserves special thanks for the current version of the program).

To illustrate how the quantile approach to data analysis could be

presented to students in an introductory statistics class, we consider a

data set analyzed by Larsen and Marx (1981), p. 324.

An important problem of two sample data analysis arises in cases of

disputed authorship. Were the 10 essays published in 1861 by "Quintus

Curtius Snodgrass" actually written by Mark Twain? Let X and Y respectively

denote the proportion of three-letter words in (eight) Twain essays and

(ten) Snodgrass essays. For ease of writing, the sample values Xl ,... ,X8,

Y1,. ..,Yo are multiplied by 1000 and 200 is subtracted. The samples then

have order statistics:

X: 17, 17, 25, 29, 30, 35, 40, 62

A Y: -4, 1, 2, 5, 7, 9, 10, 20, 23, 24.

A typical data analysis might include the following diagnostics.

I. An analysis of the two samples based on the t-test yields a t-value

of 3.86 and rejects Ho [at the .002 level]. That the distributions of X and
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Y are very non-normal can be quickly examined by plotting the informative

quantile functions of the samples. For a sample quantile function Q(u) the

informative quantile function IQ(u), which represent Q(u) normalized so that

Q(0.5) = 0 and approximately Q'(O.5)=l, is estimated by

IQ(u) - Q(u) - Q(0.5)

2{Q(0.75) - Q(0.25)1

For a random sample X1,...,X m, with order statistics X(I)<...<X(m), we define

"'-: : X(j) ,

Q(u) is defined by linear interpolation for other values of u. With this

convention we obtain

u 1/9, 2/9 3/9 4/9 5/9 6/9 7/9 8/9

IQx(u) -.38 -.38 -.14 -.02 .02 .17 .32 .98

u 1/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/1

IQy(u) -.52 -.30 -.26 -.13 -.04 .04 .09 .52 .67 .70

These informative quantile functions indicate shorter-tailed distributions

than the normal. A test based on the t-statistic might still be defended by

those who believe that robustness justifies such procedures [this may be true

only for distributions for which IQ(u) is not too asymmetric].

- II. Conventional two-sample procedure. Apply a Wilcoxon rank sum test.

Let R. denote the ranks in the pooled sample of the X values.

R: 8, 9, 13, 14, 15, 16, 17, 18
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* One desires to test the significance (concerning equality of populations)

* of the rank sum equal to 110, or equivalently of the statistic

-* 1 m R.

mj=1l

Note E[T] =0.5. For the Mark Twain data, T =110/152 =.7237. The

variance of T is .0055; therefore (T-E [T])/a(T) = 3.02. One concludes

that the hypothesis H that Twain wrote the Snodgrass papers is rejected

[at the .001 level, usinq the nornmal approximation].

III. A graphical test can lead to a firm conclusion. An alternative to

computing a statistic and determining its significance level is to plot

D(u), using the fact that it is a distribution function with jumps of

size 1/in at the points R /N. D(u) has the following values:

u 8/18 9/18 13/18 14/18 15/18 16/18 17/18 18/18

.444 .5 .722 .778 .833 .889 .944 1.0

D (u) 1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8

.125 .25 .375 .5 .625 .75 .875 1.0

The graph of D(u) is always below the uniform D (u) =u; we conclude that
0

no reasonable test procedure would decide that Twain wrote the Snodgrass

papers.

* IV. Pseudo-correlations. The following table lists for the Mark Twain

adata the squared-modulus Ip(v)I of the pseudo-correlations of lags
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v 1 2 3 4 5

Ip(v) 12 .2527 .1664 .0652 .1196 .0253

Since 2Nx/(l-x) = 28.8, the pseudo-correlation of lag 1 indicates that H
0

should be rejected [at the .025 level; 28.81p(1)1 2 = 7.3].

V. Entropy and AIC. The following table lists for the Mark Twain data the

entropy - log Km' and order determining criterion AIC(m), for m=1,2,... ,5:

m 1 2 3 4 5

-log K .291 .696 1.669 1.980 2.740

AIC(m) -.152 -.418 -1.252 -1.424 -2.046

One rejects H because AIC(m)<O for some m>l (and indeed AIC is negative
• 0 -

for all the values of m listed above). No optimal order m is chosen

because AIC(m) does not achieve a relative minimum among the orders listed.

VI. Graphs of autoregressive density estimators d (u). When an order m

is determined one considers d(u) as an estimator of d(u). For the Markm

Twain data, where the two samples are almost disjoint, no order is

0 .determined. The graphs of Di(u) also indicate that a satisfactory estimator

is not achieved among m=l,...,5. Since the sample sizes are so small here,

one hesitates to consider larger values of m.

" -- ,-o---------------------------------
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Actual graphs produced by TWOSAM are not included in this paper

* because the paper is too long and for the Snodgrass example the graphs are

-not actually needed to draw conclusions about H .* Of course, one should

* study the graphs in order to discern information not contained in the numbers

proposed as diagnostic measures.

Epilogue. What do we see as the future of the FUN.STAT Quantile approach to

two-sample data analysis? It aims to provide statisticians with (1) new

procedures which can detect differences in populations which are not diagnosed

by conventional procedures, and (2) diagnostics of distributional shape

* which can enhance confidence in the use of conventional procedures. The

* theory of the new procedures is asymptotic, but they are practical to use

in both very small and very large samples. The investigation of their

* properties, especially in small samples by Monte-Carlo methods, can be

*considered to provide many important research problems. We would like to

emphasize our belief that it is unwise to rely on pure graphical data

* analysis based only on graphs which are not accompanied by diagnostic

- measures. FUN.STAT facilitates estimation of entropy and information measures

which are particularly useful summary measures because they may provide

* comparisons between parametric and non-parametric analysis of a data set

- [see Parzen (1983)].



51

REFERENCES

Berk, K. N. (1974) Consistent autoregressive spectral estimates. Ann.
Statist., 2, 489-502.

Carmichael, J. P. (1976) The Autoregressive Method: A Method of
Approximating and Estimating Positive Functions. Ph.D. Thesis,
Statistical Science, SUNY Buffalo

(1978) Consistency of the Autoregressive Method of Density
Estimation. Technical Report. Statistical Science, SUNY
Buffalo.

and Parzen, E. (1977) New Nonparametric Approach to the
Two-Sample Problem. Technical Report. Statistical Science,
SUNY Buffalo.

Chernoff, H. and Savage, I. R. (1958). Asymptotic normality and efficiency
of certain nonparametric test statistics. Ann. Math Statist.
29, 972-94.

Csdrg6, M. and R~v~sz, P. (1981) Strong Approximations in Probability and
Statistics, Academic Press: New York.

Eubank, R. L. (1979) A Density-Quantile Function Approach to Choosing
Order Statistics for the Estimation of Location and Scale
Parameters, Technical Report A-1O, Texas A&M, Institute of
Statistics.

Grenander, U. (1981) Abstract Inference, Wiley: New York.

Larsen, R. J. and Marx, M. L. (1981) An Introduction to Mathematical

Statistics and its Applications, Prentice Hall: Englewood
Cliffs, N.J.

Parzen, E. (1961) An approach to time series analysis Ann. Math. Statist.,
32 (1961), 951-989.

_____ (1961) Regression analysis of continuous parameter time
series Proc. 4th Berkeley Sympos. Math. Statist. and Prob.,
Vol. I, Univ. California Press, Berkeley, Calif. 469-489.

(1969) Multiple time series modeling Multivariate Analysis
- II, edited by P. Krishnaiah, Academic Press: New York,
389-409.

(1979) Nonparametric Statistical Data Modeling Journal of the
American Statistical Association, (with discussion), 7_9_ iT3T_-

. .



52

"__ _. (1980) Quantile Functions, Convergence in Quantile, and
-- Extreme Value Distribution Theory, Technical Report B-3,

Texas A&M, Institute of Statistics.

"__-___. (1982) Data Modeling Using Quantile and Density-Quantile
Functions, Proceedings of 1980 Lisbon Academy of Sciences
Symposium on Recent Advances in Statistics. Academic Press:
New York. 23-52.

_ _ _ (1983) Quantiles, Parametric-Select Density Estimation,
and Bi-Information Parameter Estimators, Proceedings of the
14th Annual Symposium on the Interface of Computer Science
and Statistics, New York: Springer Verlag.

(1983) Entropy Interpretation of Goodness of Fit Tests,
iechnical Report B-8. Texas A&M, Institute of Statistics.

Prihoda, T. J. (1981) A Generalized Approach to the Two Sample Problem:
The Quantile Appraoch, Technical Report B-5, Texas A&M, Institute
of Statistics.

Pyke, R. (1970) Asymptotic Results for Rank Statistics in Nonparametric
Techniques in Statistical Inference, ed. M. L. Puri, Cambridge:
Cambridge University Press.

_ _ and Shorack, G. (1968) Weak convergence of a two-sample
empirical process and a new approach to Chernoff-Savage
theorems. Ann. Math. Statist. 39, 755-71.

White, J. M. (1980) A Quantile Function Approach to the K-sample Quantile
Regression Problem, Technical Report B-4, Texas A&M, Institute
of Statistics.

Woodfield, T. J. (1982) Statistical Modeling of Bivariate Data, Technical
Report B-7, Texas A&M, Institute of Statistics.

a>

1-

Ui



AtA

oil-

41.


